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1 Introduction

Fractional calculus is a branch of mathematics that has acquired great importance today, since
it allows the study of various problems in different areas of science, by using derivation and
integration of non-integer order; as occurs in differential equations (Yusubov , 2020; Manafian
& Allahverdiyera, 2021); viscoelasticity (Bagley & Torvik, 2083; Koeller, 1984; Yajima & Na-
gahama, 2010; Atanackovic & Stankovic, 2002; Beyer & Kempfle, 1995), medicine (Dokuyucu
et al., 2018; Veeresha et al., 2019), dynamic systems Grigorenko & Grigorenko (2003); Yajima
& Nagahama (2018), mechanics Drapaca & Sivaloganathan (2012), hydrodynamics Balankin &
Elizarrataz (2012), etc.

Currently there are many definitions of fractional derivative, such as the Riemann-Liouville
fractional derivative, Caputo, Marchand, Hadamard, etc. Bonilla (2003).

In geometry, fractional calculus is also used in the study of the geometric properties of
curves (Aydin et al., 2021; Gozutok et al., 2019; Yajima et al., 2018; Aydin et al., 2021), sur-
faces (Lazopoulos & Lazopoulos, 2016; Yajima & Yamasaki, 2012), and Riemannian manifolds
(Cottrill-Shepherd& Naber, 2001; Jumarie, 2013; Calcagni, 2012).

Caputo’s fractional derivative, Caputo (1967), in geometry is also used, since the fractional
derivative of the constant function is zero.

In Yajima et al. (2018), was forced to make a simplification of the fractional derivative of
the composite function; since the formula for the fractional derivative of the composite function
involves a series, which made it difficult to apply fractional calculus to the study of geometry.
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Using the fractional derivative of Caputo, in this paper a new definition of Fractional Cur-
vature of plane curves is given, different from the approach of Yajima et al. (2018), which makes
use of integration for its calculation (58), which does not occur with the new fractional curvature.

The goal of our research is to show that our fractional curvature belongs to the intrinsic ge-
ometry of the curve; since it is invariant under isometries. Furthermore, 1-dimensional Euclidean
spaces are characterized as those spaces whose fractional curvature is zero at all points.

This paper is organized as follows: in section 2 results on differential geometry of curves (Do
Carmo, 1976; Tenenblat, 2008), and fractional Caputo derivative Caputo (1967) are given. In
section 3, fractional curvature is defined and the theory is developed. Examples in mathematics
and physics are given in section 4.

2 Preliminaries

Definition 1. (Tenenblat, 2008). A parameterized curve differentiable in Rn is a mapping
α : I ⊂ R → Rn differentiable of class C∞, on an open interval I ⊂ R. The variable t is called
a parameter, and the subset of Rn formed by the points α(t), is called the trace of the curve.

Definition 2. (Tenenblat, 2008). Let α : I ⊂ R → Rn a differentiable parameterized curve.
The vector

α′(t) =
(
x′1(t), x

′
2(t), . . . , x

′
n(t)

)
,

is called the Tangent Vector of α at t.

The curve α(t) is called Regular if

α′(t) 6= 0, ∀ t ∈ I.

Furthermore, if α is a regular curve, it can be reparametrized by the arc length parameter
s, where

s = s(t) =

∫ t

t0

‖α′(τ)‖dτ. (1)

If α is parameterized by arc length, then ‖α′(s)‖ = 1, ∀s ∈ I.

2.1 Plane curves

Let α : I ⊂ R→ R2 be a regular curve parametrized by arc length. The Frenet-Serret frame of
the plane curve α(s) = (x(s), y(s)) is given by the orthonormal basis {t(s), n(s)}, ∀s ∈ I, where

t(s) = α′(s) =
(
x′(s), y′(s)

)
, (2)

n(s) =
(
−y′(s), x′(s)

)
. (3)

The Frenet-Serret equations of the curve (Do Carmo, 1976; Tenenblat, 2008), are

t′(s) = k(s)n(s), (4)

n′(s) = −k(s)t(s). (5)

where k(s) is the integer or classical curvature of the curve α(s) at point s, and is determined
by

k(s) = 〈t′(s), n(s)〉, ∀s ∈ I. (6)
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2.2 Caputo Fractional Derivative

Let f : [a, b]→ R be a function of class C1([a, b]). The Caputo Fractional Derivative of order λ
is defined by (Bonilla, 2003; Caputo, 1967)

cDλf(t) =
1

Γ(1− λ)

∫ t

a

1

(t− u)λ
f ′(u)du, (7)

where λ ∈ R, 0 < λ < 1, and Γ is Euler’s gamma function.
In this paper we will use the Caputo fractional derivative. Furthermore, our analysis is based

on this property

lim
λ→1

cDλf(t) = f ′(t), ∀ t ∈ [a, b]. (8)

Therefore, for λ close to 1, the properties of the integer derivative can be approximated by the
Caputo’s fractional derivative.

3 Fractional Curvature

In this section we give a new definition of the fractional curvature that differs from the approach
given by Yajima et al. (2018).

Definition 3. Let α : [a, b]→ R2 be a regular curve parametrized by arc length s. The Fractional
Derivative vector of order λ of α at s, is given by

cDλα(s) =
(
cDλx(s), cDλy(s)

)
. (9)

In the Frenet-Serret frame, we have:

cDλα(s) = aλ(s)t(s) + bλ(s)n(s), ∀s ∈ [a, b]. (10)

Definition 4. Let α : [a, b] → R2 be a regular curve parametrized by arc length, cDλα(s) the
fractional derivative vector of order λ. The Fractional Curvature of order λ , 0 < λ < 1, of the
curve α at point s, is given by

kλ(s) = aλ(s)k(s) +
d

ds

(
bλ(s)

)
, ∀s ∈ [a, b], (11)

where k(s) is the integer curvature of α at point s.

Theorem 1. Let α : [a, b]→ R2 be a regular curve parametrized by arc length. Then

Projn(s)
d

ds

(
cDλα(s)

)
= kλ(s)n(s), (12)

kλ(s) = 〈Projn(s)
d

ds

(
cDλα(s)

)
, n(s)〉 = 〈 d

ds

(
cDλα(s)

)
, n(s)〉. (13)

Proof. Finding the integer derivative in (10), we have

d

ds

(
cDλα(s)

)
=

d

ds

(
aλ(s)

)
t(s) + aλ(s)t′(s) +

d

ds

(
bλ(s)

)
n(s) + bλ(s)n′(s). (14)

Substituting (4) and (5) into (14), we obtain

d

ds

(
cDλα(s)

)
=

(
d

ds

(
aλ(s)

)
− bλ(s)k(s)

)
t(s) +

(
aλ(s)k(s) +

d

ds

(
bλ(s)

))
n(s). (15)
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Then, the orthogonal projection is given by

Projn(s)
d

ds

(
cDλα(s)

)
= kλ(s)n(s),

kλ(s) = 〈Projn(s)
d

ds

(
cDλα(s)

)
, n(s)〉.

From (15), we define the function k̄λ by

k
λ
(s) :=

d

ds

(
aλ(s)

)
− bλ(s)k(s), ∀s ∈ [a, b]. (16)

Theorem 2. Let α : [a, b] ⊂ R→ R2 be a regular curve parametrized by arc length. Then

lim
λ→1

aλ(s) = 1, ∀s ∈ [a, b], (17)

lim
λ→1

bλ(s) = 0, ∀s ∈ [a, b]. (18)

Proof. By (8), we have

lim
λ→1

cDλα(s) = α′(s) = t(s), ∀s ∈ [a, b],

and by (10) we obtain the result.

Theorem 3. Let α : [a, b] ⊂ R→ R2 be a regular curve parameterized by arc length, Then

aλ(s) = x′(s)cDλx(s) + y′(s)cDλy(s), (19)

bλ(s) = x′(s)cDλy(s)− y′(s)cDλx(s). (20)

Proof. By (9) and (10), we get

cDλα(s) =
(
cDλx(s), cDλy(s)

)
= aλ(s)t(s) + bλ(s)n(s)

= aλ(s)
(
x′(s), y′(s)

)
+ bλ(s)

(
−y′(s), x′(s)

)
=

(
aλ(s)x′(s)− bλ(s)y′(s), aλ(s)y′(s) + bλ(s)x′(s)

)
.

We obtain the system of equations:{
x′(s)aλ(s)− y′(s)bλ(s) = cDλx(s)
y′(s)aλ(s) + x′(s)bλ(s) = cDλy(s)

. (21)

Furthermore, the determinant of system (21) is non-zero:∣∣∣∣x′(s) −y′(s)y′(s) x′(s)

∣∣∣∣ = 1, ∀s ∈ [a, b].

By the Cramer’s rule the result follows.

Theorem 4. Let α : [a, b] ⊂ R→ R2 be a regular curve parameterized by arc length. Then

lim
λ→1

kλ(s) = k(s), ∀s ∈ [a, b]. (22)
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Proof. By (11) we have:

kλ(s) = aλ(s)k(s) +
d

ds

(
bλ(s)

)
, ∀s ∈ [a, b],

and by (17) and (18), we have

lim
λ→1

kλ(s) = lim
λ→1

aλ(s)k(s) +
d

ds

(
lim
λ→1

bλ(s)

)
= k(s), ∀s ∈ [a, b].

This completes the proof.

Theorem 5. Let α : [a, b] ⊂ R→ R2 be a curve parametrized by arc length. Then

kλ(s) = x′(s)
d

ds

(
cDλy(s)

)
− y′(s) d

ds

(
cDλx(s)

)
. (23)

Proof. By (9), we have

d

ds

(
cDλα(s)

)
=

(
d

ds

(
cDλx(s)

)
,
d

ds

(
cDλy(s)

))
.

And by (13):

kλ(s) =

〈
d

ds

(
cDλα(s)

)
, n(s)

〉
=

〈
d

ds

(
cDλα(s)

)
, (−y′(s), x′(s))

〉
.

Therefore: kλ(s) = x′(s) dds
(
cDλy(s)

)
− y′(s) dds

(
cDλx(s)

)
.

Theorem 6. Let α : [a, b] ⊂ R→ R2 be a regular curve parameterized by arc length. Then∥∥∥∥ dds (cDλα(s)
)∥∥∥∥2 =

(
k̄λ(s)

)2
+
(
kλ(s)

)2
, ∀s ∈ [a, b]. (24)

Proof. By considering (11), (15) and (16), we obtain the equality (24).

Theorem 7. Let α : [a, b] ⊂ R→ R2 be a regular curve parameterized by arc length. Then

2
(
aλ(s)k̄λ(s) + bλ(s)kλ(s)

)
=

d

ds

∥∥∥cDλα(s)
∥∥∥2 . (25)

Proof. We multiply (11) by bλ(s) and (16) by aλ(s) and adding the equalities, we obtain:

aλ(s)k̄λ(s) + bλ(s)kλ(s) = aλ(s)
d

ds

(
aλ(s)

)
+ bλ(s)

d

ds

(
bλ(s)

)
=

1

2

d

ds

((
aλ(s)

)2
+
(
bλ(s)

)2)
=

1

2

d

ds

(∥∥∥cDλα(s)
∥∥∥2) .

Therefore
d

ds

(∥∥∥cDλα(s)
∥∥∥2) = 2

(
aλ(s)k̄λ(s) + bλ(s)kλ(s)

)
.

This completes the proof.

Theorem 8. Let α : [a, b] ⊂ R → R2 be a regular curve parameterized by arc length. Then,
there are functions f : [a, b] ⊂ R→ R and g : [a, b] ⊂ R→ R, such that

f(s)kλ(s) = k(s), ∀s ∈ [a, b], (26)

g(s)k̄λ(s) = −k(s), ∀s ∈ [a, b]. (27)
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Proof. By (15), we have

d

ds

(
cDλα(s)

)
= k̄λ(s)t(s) + kλ(s)n(s), ∀s ∈ [a, b].

Then:

Projn(s)

(
d

ds

(
cDλα(s)

))
is parallel to t′(s), ∀s ∈ [a, b],

kλ(s)n(s) is parallel to t′(s) = k(s)n(s), ∀s ∈ [a, b].

Then, there is a function f : [a, b] ⊂ R→ R such that:

f(s)kλ(s) = k(s), ∀s ∈ [a, b].

Analogously, we have

Projt(s)

(
d

ds

(
cDλα(s)

))
is parallel to n′(s), ∀s ∈ [a, b],

k̄λ(s)t(s) is parallel to n′(s) = −k(s)t(s), ∀s ∈ [a, b].

Then, there is a function g : [a, b] ⊂ R→ R such that

g(s)k̄λ(s) = −k(s), ∀s ∈ [a, b].

This completes the proof.

Corollary 1. Let α : [a, b] ⊂ R → R2 be a regular curve parameterized by arc length. Then,
there are functions f, g : [a, b] ⊂ R→ R2, such that

k(s) =
1

2

(
f(s)kλ(s)− g(s)k̄λ(s)

)
, ∀s ∈ [a, b], (28)

f(s)kλ(s) + g(s)k̄λ(s) = 0, ∀s ∈ [a, b]. (29)

Proof. By considering (26) and (27), we prove the result.

The next theorem gives a characterization of 1-dimensional Euclidean spaces, through the
fractional curvature.

Theorem 9. Let α : [a, b] ⊂ R→ R2 be a regular curve parameterized by arc length. Then

kλ(s) = 0 if and only if k(s) = 0, ∀s ∈ [a, b], ∀λ ∈< 0, 1 > . (30)

Proof. Suppose that kλ(s) = 0, ∀s ∈ [a, b], ∀λ ∈< 0, 1 >, then by (26) we have

k(s) = f(s)kλ(s) = 0, ∀s ∈ [a, b].

Conversely, suppose that k(s) = 0,∀s ∈ [a, b]. Then, by the Frenet-Serret equation (4), we have

α(s) = (x0 + sv1, y0 + sv2) = (x(s), y(s)) v = (v1, v2) ∈ R2, ‖v‖ = 1.

The coordinate functions are: x(s) = x0 + sv1, y(s) = y0 + sv2.

Finding the integer derivative of the functions, we get

x′(s) = v1, y′(s) = v2, ∀s ∈ [a, b]. (31)
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We find the Caputo derivative

cDλx(s) =
s1−λ

Γ(2− λ)
v1 , cDλy(s) =

s1−λ

Γ(2− λ)
v2. (32)

Using the equalities (31) and (32), we find aλ and bλ :

aλ(s) = x′(s)cDλx(s) + y′(s)cDλy(s) =
s1−λ

Γ(2− λ)
, ∀s ∈ [a, b], (33)

bλ(s) = x′(s)cDλy(s)− y′(s)cDλx(s) = 0, ∀s ∈ [a, b]. (34)

Substituting (33) and (34) into (11), we obtain kλ(s) = 0, ∀s ∈ [a, b], λ ∈< 0, 1 >.

Theorem 10. Let α : [a, b] ⊂ R → R2 be a regular curve parameterized by arc length, let
F : R2 → R2 an isometry and β = F ◦ α : [a, b] ⊂ R→ R2. Then

cDλβ(s) = dFα(s)

(
cDλα(s)

)
, (35)

kλβ(s) = kλα(s), (36)

where kλα(s) and kλβ(s) are the fractional curvatures of the curves α and β respectively; and

dFα(s) : R2 → R2 denote the differential of F at α(s).

Proof. Let {tα(s), nα(s)}, {tβ(s), nβ(s)} be the Frenet-Serret frames of the curves α and β
respectively.

Since F is an isometry, then

tβ(s) = dFα(s) (tα(s)) , (37)

nβ(s) = dFα(s) (nα(s)) , (38)

kβ(s) = kα(s). (39)

where kβ(s) and kα(s) denote the integer curvature of the curves α and β respectively.
Furthermore, we have

cDλα(s) = aλ(s)tα(s) + bλ(s)nα(s),
cDλβ(s) = Aλ(s)tβ(s) +Bλ(s)nβ(s).

Since F is an isometry, there exist a translation Tp and an orthogonal transformation C, such
that

F = Tp ◦ C. (40)

By (40), we have

β(s) = (Tp ◦ α) (s) = (Tp ◦ C) (α(s)) ,

= p+ C(α(s)) = p+ C (x(s)e1 + y(s)e2)

= p+ x(s)C(e1) + y(s)C(e2).

Then, we find the Caputo derivative

cDλβ(s) = cDλ(p) +
(
cDλx(s)

)
C(e1) +

(
cDλy(s)

)
C(e2),

= C
(
cDλx(s)e1 + cDλy(s)e2

)
= C

(
cDλα(s)

)
.

Hence cDλβ(s) = C
(
cDλα(s)

)
= dFα(s)

(
cDλα(s)

)
.
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Also, by (37) and (38), we have

Aλ(s)tβ(s) +Bλ(s)nβ(s) = cDλβ(s) = dFα(s)

(
aλ(s)tα(s) + bλ(s)nα(s)

)
= aλ(s)dFα(s) (tα(s)) + bλ(s)dFα(s) (nα(s))

= aλ(s)tβ(s) + bλ(s)nβ(s).

Then

Aλ(s) = aλ(s), ∀s ∈ [a, b],

Bλ(s) = bλ(s), ∀s ∈ [a, b].

Therefore, we get

kλβ(s) = Aλ(s)kβ(s) +
d

ds

(
Bλ(s)

)
= aλ(s)kα(s) +

d

ds

(
bλ(s)

)
= kλα(s), ∀s ∈ [a, b].

Next, we will obtain the results for a regular curve with arbitrary parameter r.
Let α : [c, d] ⊂ R → R2 a regular curve with arbitrary parameter r, {t(r), n(r)} the Frenet-

Serret frame of α at r, where

t(r) =
α′(r)

‖α′(r)‖
=

(x′(r), y′(r))

‖α′(r)‖
, n(r) =

(−y′(r), x′(r))
‖α′(r)‖

. (41)

Furthermore, we have

t′(r) = ‖α′(r)‖k(r)n(r), (42)

n′(r) = −‖α′(r)‖k(r)t(r), (43)

where

k(r) =
−x′′(r)y′(r) + y′′(r)x′(r)

‖α′(r)‖3
. (44)

is the integer curvature of α at r.
Therefore

cDλα(r) = aλ(r)t(r) + bλ(r)n(r), ∀r ∈ [c, d]. (45)

By (8), we have the following result.

Theorem 11. Let α : [c, d] ⊂ R→ R2 a regular curve with arbitrary parameter r. Then:

lim
λ→1

aλ(r) = ‖α′(r)‖, ∀r ∈ [c, d], (46)

lim
λ→1

bλ(r) = 0, ∀r ∈ [c, d]. (47)

Proof. The proof is immediate.

Finding the integer derivative in (45):

d

dr

(
cDλα(r)

)
=

d

dr

(
aλ(r)

)
t(r) + aλ(r)t′(r) +

d

dr

(
bλ(r)

)
n(r) + bλ(r)n′(r). (48)

Using the equalities (42) and (43) in (48), we get

d

dr

(
cDλα(r)

)
=

[
d

dr

(
aλ(r)

)
− bλ(r)‖α′(r)‖k(r)

]
t(r) +

[
aλ(r)‖α′(r)‖k(r) +

d

dr

(
bλ(r)

)]
n(r).

(49)
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From (49), we define the function kλ1 : [c, d]→ R, by

kλ1 (r) = aλ(r)‖α′(r)‖k(r) +
d

dr

(
bλ(r)

)
. (50)

From (49), we have

kλ1 (r) = 〈 d
dr

(
cDλα(r)

)
, n(r)〉, ∀r ∈ [c, d].

Theorem 12. Let α : [c, d] ⊂ R→ R2 a regular curve with arbitrary parameter r. Then:

k(r) = lim
λ→1

kλ1 (r)

‖α′(r)‖2
, ∀r ∈ [c, d]. (51)

Proof. By (50), we have

kλ1 (r) = aλ(r)‖α′(r)‖k(r) +
d

dr

(
bλ(r)

)
.

Then, finding the limit

lim
λ→1

kλ1 (r) =

(
lim
λ→1

aλ(r)

)
‖α′(r)‖k(r) + lim

λ→1

(
d

dr

(
bλ(r)

))
.

By (46) and (47), we get
lim
λ→1

kλ1 (r) = ‖α′(r)‖2k(r).

Therefore:

k(r) = lim
λ→1

kλ1 (r)

‖α′(r)‖
, ∀r ∈ [c, d].

From (51) we have the next definition.

Definition 5. Let α : [c, d] ⊂ R → R2 be a regular curve with arbitrary parameter r, cDλα(r)
the fractional derivative vector of order λ. The Fractional Curvature of order λ of the curve α
at point r, is given by:

kλ(r) =
kλ1 (r)

‖α′(r)‖2
, ∀r ∈ [c, d]. (52)

Theorem 13. Let α : [c, d] ⊂ R→ R2 be a regular curve with arbitrary parameter r. Then

kλ(r) =
aλ(r)

‖α′(r)‖
k(r) +

1

‖α′(r)‖2
d

dr

(
bλ(r)

)
, ∀r ∈ [c, d]. (53)

Proof. By (50) and definition 5. we have

kλ(r) =
kλ1 (r)

‖α′(r)‖2
=
aλ(r)‖α′(r)‖k(r) + d

dr

(
bλ(r)

)
‖α′(r)‖2

, ∀r ∈ [c, d].

Then

kλ(r) =
aλ(r)

‖α′(r)‖
k(r) +

1

‖α′(r)‖2
d

dr

(
bλ(r)

)
, ∀ r ∈ [c, d].
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Note that if the curve is parameterized by arc length, then (53) coincides with (11).

Theorem 14. Let α : [c, d] ⊂ R → R2 a regular curve with arbitrary parameter r, cDλα(r) =
aλ(r)t(r) + bλ(r)n(r) the fractional derivative vector. Then

aλ(r) =
[
x′(r)cDλx(r) + y′(r)cDλy(r)

] 1

‖α′(r)‖
, (54)

bλ(r) =
[
x′(r)cDλy(r)− y′(r)cDλx(r)

] 1

‖α′(r)‖
. (55)

Proof. We have α(r) = (x(r), y(r)) and α′(r) = (x′(r), y′(r)). Then the Frenet-Serret frame in
arbitrary parameter r is {t(r), n(r)}, where

t(r) =
α′(r)

‖α′(r)‖
, n(r) =

(
− y′(r)

‖α′(r)‖
,
x′(r)

‖α′(r)‖

)
.

Furthermore:

cDλα(r) =
(
cDλx(r), cDλy(r)

)
= aλ(r)t(r) + bλ(r)n(r)

= aλ(r)

(
x′(r)

‖α′(r)‖
,
y′(r)

‖α′(r)‖

)
+ bλ(r)

(
− y′(r)

‖α′(r)‖
,
x′(r)

‖α′(r)‖

)
. (56)

From (56), we get the system{
x′(r)aλ(r)− y′(r)bλ(r) = cDλx(r)‖α′(r)‖
y′(r)aλ(r) + x′(r)bλ(r) = cDλy(r)‖α′(r)‖ . (57)

The determinant of the system (57) is:∣∣∣∣x′(r) −y′(r)y′(r) x′(r)

∣∣∣∣ = ‖α′(r)‖2 6= 0, ∀r ∈ [c, d].

Therefore, the system has a unique solution:

aλ(r) =
[
x′(r)cDλx(r) + y′(r)cDλy(r)

] 1

‖α′(r)‖
,

bλ(r) =
[
x′(r)cDλy(r)− y′(r)cDλvvx(r)

] 1

‖α′(r)‖
.

4 Applications

In this section we present some examples where the fractional curvature of plane curves with
arbitrary parameter r is calculated; and it is observed that the results give a better approximation
to the integer curvature, when compared to the fractional curvature of Yajima et al. (2018),
theorem 3.3, which is given by

k(λ) =

{
Γ(2− λ)

λ

} 1
λ
[
λ

∫ r

0

√
ẋ2 + ẏ2dr

]1− 1
λ

k(r). (58)

Example. Consider the parameterized curve α(r) = (r, r
2

2 ) = (x(r), y(r)) , ∀ r ∈ R.
The integer curvature is given by

k(r) =
1

(1 + r2)3/2
. (59)

166
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By (53), the fractional curvature of order λ, 0 < λ < 1, given in this paper is

kλ(r) =
(2λ− λ2)(r1−λ + r3−λ)

Γ(3− λ)(1 + r2)5/2
. (60)

Figure 1 shows the graph of kλ(r) for different values of λ : 0.7, 0.8, 0.9, 1.0. As seen in
Figure 1, as λ approaches to 1, the graph of the function kλ(r) approaches the graph of the
integer curvature k(r).

Figure 1: Graph of fractional curvature for different values of λ

The fractional curvature of Yajima et al., is given by

k(λ)(r) =
λ1−

2
λ {Γ(2− λ)}

1
λ

(1 + r2)3/2

[
1

2

{
r
√

1 + r2 + log(r +
√

1 + r2)
}]1− 1

λ

. (61)

Table 1 shows the results of evaluating the curvatures k(r), kλ(r), k(λ)(r), and the errors
Eλ(r) = ‖k(r) − kλ(r)‖, E(λ)(r) = ‖k(r) − k(λ)(r)‖, for λ = 0.9, at different points of the
interval [0, 5].

As seen in table 1, the error Eλ(r) is less than the error E(λ)(r); which indicates that the
fractional curvature given in this paper gives a better approximation to the entire curvature
than that provided by Yajima et al.
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Table 1: Comparison between the fractional curvature kλ(r) and the fractional curvature k(λ)(r)
of Yajima et al. (2018) for λ = 0.9

r k(r) kλ(r) k(λ)(r) Eλ(r) E(λ)(r)

0.0505 0.9962 0.6992 1.4937 0.2970 0.4975
0.1010 0.9849 0.7408 1.3671 0.2440 0.3822
0.1515 0.9665 0.7571 1.2822 0.2094 0.3157
0.2020 0.9418 0.7592 1.2096 0.1825 0.2679
0.2525 0.9114 0.7514 1.1415 0.1601 0.2301
0.3030 0.8765 0.7359 1.0753 0.1406 0.1987
0.3535 0.8381 0.7145 1.0100 0.1235 0.1720
0.4040 0.7971 0.6887 0.9458 0.1084 0.1488
0.4545 0.7545 0.6596 0.8830 0.0984 0.1285
0.5051 0.7112 0.6284 0.8220 0.0828 0.1108
0.5556 0.6680 0.5959 0.7633 0.0721 0.0953

Example. Consider the circumference α(r) = (cos(r), sin(r)), ∀r ∈ [0, 2π]. The integer
curvature is given by

k(r) = 1, ∀r ∈ [0, 2π].

The fractional curvature kλ(r) of order λ , 0 < λ < 1, is given by

kλ(r) = −sin(r)S′1(r)− cos(r)S′2(r),

where

S1(r) =
+∞∑
k=0

(−1)kr2k+1−λ

Γ(2k + 2− λ)
, S2(r) =

+∞∑
k=0

(−1)k+1r2k+2−λ

Γ(2k + 3− λ)
.

Figure 2 shows the graph of kλ(r) for different values of λ : 0.7, 0.8, 0.9, 1.0. As seen in
Figure 2, as λ approaches to 1, the graph of the function kλ(r) approaches the graph of the
integer curvature k(r).

Figure 2: Graph of kλ(r), for different values of λ

168
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The fractional curvature of Yajima et al., is given by

k(λ) = λ1−
2
λ {Γ(2− λ)}

1
λ r1−

1
λ .

Table 2 shows the results of evaluating the curvatures k(r), kλ(r), k(λ)(r), and the errors
Eλ(r) = ‖k(r) − kλ(r)‖, E(λ)(r) = ‖k(r) − k(λ)(r)‖, for λ = 0.95, at different points of the
interval [0, 5].

As seen in table 2, the error, the error Eλ(r) is less than the error E(λ)(r); which indicates
that the fractional curvature given in this paper gives a better approximation to the entire
curvature than that provided by Yajima et al.

Table 2: Comparison between the fractional curvature kλ(r) and the fractional curvature k(λ)(r)
of Yajima et al. (2018) for λ = 0.95

r k(r) kλ(r) k(λ)(r) Eλ(r) E(λ)(r)

0.1020 1.0000 0.8706 1.1602 0.1294 0.1602
0.2041 1.0000 0.9012 1.1186 0.0988 0.1186
0.3061 1.0000 0.9194 1.0950 0.0806 0.0950
0.4082 1.0000 0.9325 1.0785 0.0675 0.0785
0.5102 1.0000 0.9426 1.0659 0.0574 0.0659
0.6122 1.0000 0.9508 1.0557 0.0492 0.0557
0.7143 1.0000 0.9576 1.0472 0.0424 0.0472
0.8163 1.0000 0.9634 1.0399 0.0366 0.0399
0.9184 1.0000 0.9684 1.0335 0.0316 0.0335
1.0204 1.0000 0.9728 1.0277 0.0272 0.0277
1.1224 1.0000 0.9766 1.0226 0.0234 0.0226

Example. Consider the parameterized curve

α(r) =

(
r,
r3

3

)
= (x(r), y(r)) , ∀r ∈< 0,+∞ > .

The integer curvature is given by

k(r) =
2r

(1 + r4)3/2
.

The fractional curvature kλ(r) of order λ , 0 < λ < 1, is given by

kλ(r) = (r2−λ + r6−λ)
Cλ

(1 + r4)5/2
,

where

Cλ =
λ− 1

Γ(2− λ)
+

2(3− λ)

Γ(4− λ)
.

Figure 3 shows the graph of kλ(r) for different values of λ : 0.7, 0.8, 0.9, 1.0.

169



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.8, N.2, 2023

Figure 3: Graph of kλ(r), for different values of λ

Table 3 shows the fractional curvature for different values of λ : 0.7, 0.8, 0.96 and 1.00; at
different points of the interval [0, 5].

Table 3: Fractional curvature for different λ.

r k(r) k0.96(r) k0.8(r) k0.7(r)

0.1020 0.2040 0.1792 0.1032 0.0710
0.2041 0.4071 0.3676 0.2366 0.1744
0.3061 0.6043 0.5546 0.3809 0.2923
0.4082 0.7835 0.7274 0.5231 0.4132
0.5102 0.9248 0.8663 0.6456 0.5215
0.6122 1.0053 0.9486 0.7279 0.5987
0.7143 1.0097 0.9586 0.7539 0.6298
0.8163 0.9408 0.8980 0.7215 0.6108
0.9184 0.8204 0.7868 0.6442 0.5518
1.0204 0.6783 0.6532 0.5439 0.4708
1.1224 0.5394 0.5215 0.4409 0.3853
1.2245 0.4183 0.4058 0.3479 0.3067
1.3265 0.3200 0.3114 0.2704 0.2403
1.4286 0.2434 0.2376 0.2088 0.1869
1.5306 0.1852 0.1813 0.1611 0.1452
1.6327 0.1415 0.1389 0.1247 0.1131
1.7347 0.1088 0.1070 0.0970 0.0886
1.8367 0.0843 0.0831 0.0761 0.0698
1.9388 0.0659 0.0651 0.0601 0.0555
2.0408 0.0519 0.0514 0.0478 0.0444
2.1429 0.0413 0.0410 0.0384 0.0358
2.2449 0.0331 0.0329 0.0311 0.0291

4.1 Example of a block moving alon a parabolic arc

This example is motivated by Lapidus (1984) paper, and it will be shown that the magnitude of
the total velocity of a block moving along a parabolic arc depends on the fractional curvature
of the trajectory.

170
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Consider the motion of a block of mass m moving on the parabolic arc y = x2

2 , 0.1 ≤ x ≤ 3.
The block starts from rest at the point x = 3 and moves along the parabolic arc, acting on it
the gravity g and the kinetic sliding friction µ.

Figure 4: Displacement path

The trajectory is parameterized by α(r) =
(
r, r

2

2

)
= (x(r), y(r)) , r ∈ [0.1, 3].

The equations of motion, Lapidus (1984), are of the form:

mẍ = −N sin θ + f cos θ,

mÿ = mg +N cos θ + f sin θ,

where

• θ is the angle with the horizontal,

• f = ±µN ,

• µ is the coefficient of kinetic friction.

The sign of f is the opposite of the direction of motion of the block.

By integrating we obtain

ln

(
1 +

Vx
g

)
= 2 ln

(
cos θ

cos θ0

)
± 2µ (θ − θ0) ,

where

• θ0 is the initial angle of the block,

• Vx is the horizontal velocity of the block.

The total velocity is given by

V = Vx cos θ.

In addition, as the derivitative

y′(x) = x = tan θ,

the integer curvature of α, is

k = cos3 θ.
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Therefore, the horizontal velocity as a function of the integer curvature is given by

Vx =

√√√√g

[(
k

k0

)2/3

e
2µ

(
arccos

(
k
1
3

)
−arccos

(
k
1
3
0

))
− 1

]
,

and the magnitude of the total velocity in terms of the integer curvature is given by

V =
Vx

k1/3
.

Using the fractional curvature given at this paper (60), the horizontal velocity as a function
of the fractional curvature of order λ, is given by

Vx,λ =

√√√√g

[(
kλ

kλ0

)2/3

e
2µ

(
arccos

(
(kλ)

1
3

)
−arccos

(
(kλ0 )

1
3

))
− 1

]
,

and the magnitude of the total fractional Velocity of order λ, is given by

V λ =
Vx,λ

(kλ)
1/3

.

In this example we consider µ = 0.2, g = 9.8, and using a partition with 30 points in the
interval [0.1; 3], the data in Table 4 are obtained for different values of λ : 0.7, 0.8, 0.9 y 1.0.

The ri values denote the partition points, which are sorted in descending order to be able to
analyze the results.

Thus, for k0.7 = 0.0343, k0.8 = 0.0343, k0.9 = 0.0334 and k1.0 = 0.0316, the fractional total
velocity and integer total velocity are identically zero; this indicates that the block is at rest.

Furthermore, it is observed that k0.7 and k0.8 grow to 0.4776 and 0.6018 respectively, and
V 0.7 and V 0.8 grow to 6.9385 and 7.3801respectively, and k0.7 and k0.8 decrease to 0.3851 and
0.5416 respectively, and also V 0.7 amd V 0.8 decrease to 6.5601 and 7.1526 respectively.

Finally, k0.9 grow to 0.7594 and decrease to 0.7403, V 0.9 grow to 7.7811 and decrease to
7.7426.

It is observed that these decreases in the values occur near the left end of the interval, as
shown in Table 4.

Table 4: Total Fractional Velocity for different values of the fractional curvature of order λ

ri k0.7 V 0.7 k0.8 V 0.8 k0.9 V 0.9 k1.0 = k V 1.0 = V

3.0000 0.0343 0 0.0343 0 0.0334 0 0.0316 0
2.9000 0.0372 1.0441 0.0373 1.0658 0.0365 1.0907 0.0346 1.1189
2.8000 0.0404 1.4924 0.0407 1.5238 0.0399 1.5598 0.0380 1.6005
2.7000 0.0440 1.8479 0.0445 1.8872 0.0438 1.9324 0.0419 1.9834
2.6000 0.0481 2.1578 0.0488 2.2045 0.0482 2.2579 0.0463 2.3183
2.5000 0.0526 2.4405 0.0536 2.4941 0.0531 2.5554 0.0512 2.6247
2.4000 0.0577 2.7053 0.0591 2.7657 0.0587 2.8348 0.0569 2.9127
2.3000 0.0635 2.9579 0.0652 3.0251 0.0652 3.1019 0.0634 3.1884
2.2000 0.0700 3.2019 0.0723 3.2761 0.0725 3.3607 0.0709 3.4560
2.1000 0.0774 3.4400 0.0803 3.5213 0.0810 3.6140 0.0795 3.7183
2.0000 0.0859 3.6741 0.0895 3.7629 0.0907 3.8638 0.0894 3.9774
1.9000 0.0955 3.9056 0.1001 4.0021 0.1019 4.1119 0.1010 4.2352
1.8000 0.1066 4.1356 0.1122 4.2404 0.1149 4.3594 0.1145 4.4929
1.7000 0.1192 4.3650 0.1263 4.4785 0.1300 4.6073 0.1303 4.7517
1.6000 0.1337 4.5942 0.1425 4.7172 0.1476 4.8564 0.1489 5.0125
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1.5000 0.1503 4.8237 0.1613 4.9568 0.1681 5.1072 0.1707 5.2757
1.4000 0.1694 5.0533 0.1830 5.1974 0.1921 5.3598 0.1964 5.5418
1.3000 0.1913 5.2828 0.2081 5.4387 0.2201 5.6143 0.2267 5.8107
1.2000 0.2161 5.5113 0.2371 5.6802 0.2528 5.8699 0.2624 6.0820
1.1000 0.2443 5.7375 0.2703 5.9205 0.2907 6.1257 0.3044 6.3548
1.0000 0.2758 5.9592 0.3081 6.1577 0.3345 6.3797 0.3536 6.6273
0.9000 0.3103 6.1734 0.3503 6.3890 0.3844 6.6294 0.4107 6.8970
0.8000 0.3473 6.3759 0.3968 6.6105 0.4405 6.8709 0.4761 7.1600
0.7000 0.3853 6.5611 0.4461 6.8170 0.5019 7.0991 0.5498 7.4112
0.6000 0.4219 6.7215 0.4960 7.0016 0.5668 7.3077 0.6305 7.6439
0.5000 0.4533 6.8475 0.5427 7.1561 0.6316 7.4891 0.7155 7.8499
0.4000 0.4743 6.9262 0.5806 7.2702 0.6909 7.6347 0.8004 8.0197
0.3000 0.4776 6.9385 0.6018 7.3301 0.7370 7.7358 0.8787 8.1434
0.2000 0.4538 6.8493 0.5954 7.3124 0.7594 7.7811 0.9429 8.2117
0.1000 0.3851 6.5601 0.5416 7.1526 0.7403 7.7426 0.9852 8.2175

Using the data from Table 4, the total fractional and integer velocity is plotted as a function
of the fractional and integer curvature of the trajectory for different values of λ : 0.7, 0.8, 0.9 and
1.0.

Figure 5: Fractional Total Velocity vs Fractional Curvature

Figure 5(a) shows the behavior of the integer total velocity as a function of the integer
curvature of the trajectory. Figures 5(b), 5(c) and 5(d) show the behavior of the total fractional
velocity as a function of the fractional curvature of the trajectory; and it is observed that when
λ is close to 1, the curve approaches the integer case.

5 Conclusions

In this paper a new definition of Fractional Curvature of plane curves was introduced, using
Caputo’s fractional derivative of order λ (0 < λ < 1). The importance of our study lies in the
analysis of the geometrical properties of the curve from the point of view of fractional calculus;
thus it has been proved that the fractional curvature belongs to the intrinsic geometry of the
curve; since it is invariant under isometries. The 1-dimensional Euclidean spaces were also
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characterized as those curves whose fractional curvature of order λ is zero at all its points for
all λ. In addition, an example showed the relationship between the velocity of a body moving
on a parabolic arc, and the fractional curvature of the parabolic arc.
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